Image quality assessment (IQA) forms a natural and often straightforward undertaking for humans, yet effective automation of the task remains highly challenging. Recent metrics from the deep learning community commonly compare image pairs during training to improve upon traditional metrics such as PSNR or SSIM. However, current comparisons ignore the fact that image content affects quality assessment as comparisons only occur between images of similar content. This restricts the diversity and number of image pairs that the model is exposed to during training. In this paper, we strive to enrich these comparisons with content diversity. Firstly, we relax comparison constraints, and compare pairs of images with differing content. This increases the variety of available comparisons. Secondly, we introduce listwise comparisons to provide a holistic view to the model. By including differentiable regularizers, derived from correlation coefficients, models can better adjust predicted scores relative to one another. Evaluation on multiple benchmarks, covering a wide range of distortions and image content, shows the effectiveness of our learning scheme for training image quality assessment models.
translated by 谷歌翻译
Candidate axiom scoring is the task of assessing the acceptability of a candidate axiom against the evidence provided by known facts or data. The ability to score candidate axioms reliably is required for automated schema or ontology induction, but it can also be valuable for ontology and/or knowledge graph validation. Accurate axiom scoring heuristics are often computationally expensive, which is an issue if you wish to use them in iterative search techniques like level-wise generate-and-test or evolutionary algorithms, which require scoring a large number of candidate axioms. We address the problem of developing a predictive model as a substitute for reasoning that predicts the possibility score of candidate class axioms and is quick enough to be employed in such situations. We use a semantic similarity measure taken from an ontology's subsumption structure for this purpose. We show that the approach provided in this work can accurately learn the possibility scores of candidate OWL class axioms and that it can do so for a variety of OWL class axioms.
translated by 谷歌翻译
Identifying anomalies has become one of the primary strategies towards security and protection procedures in computer networks. In this context, machine learning-based methods emerge as an elegant solution to identify such scenarios and learn irrelevant information so that a reduction in the identification time and possible gain in accuracy can be obtained. This paper proposes a novel feature selection approach called Finite Element Machines for Feature Selection (FEMa-FS), which uses the framework of finite elements to identify the most relevant information from a given dataset. Although FEMa-FS can be applied to any application domain, it has been evaluated in the context of anomaly detection in computer networks. The outcomes over two datasets showed promising results.
translated by 谷歌翻译
使用机器学习算法从未标记的文本中提取知识可能很复杂。文档分类和信息检索是两个应用程序,可以从无监督的学习(例如文本聚类和主题建模)中受益,包括探索性数据分析。但是,无监督的学习范式提出了可重复性问题。初始化可能会导致可变性,具体取决于机器学习算法。此外,关于群集几何形状,扭曲可能会产生误导。在原因中,异常值和异常的存在可能是决定因素。尽管初始化和异常问题与文本群集和主题建模相关,但作者并未找到对它们的深入分析。这项调查提供了这些亚地区的系统文献综述(2011-2022),并提出了共同的术语,因为类似的程序具有不同的术语。作者描述了研究机会,趋势和开放问题。附录总结了与审查的作品直接或间接相关的文本矢量化,分解和聚类算法的理论背景。
translated by 谷歌翻译
神经网络体系结构的定义是执行最关键和最具挑战性的任务之一。在本文中,我们提出了平行密码。ParallelMLPS是一种可以通过探索现代CPU和GPU的局部性和并行功能的原理来实现具有不同数量神经元和激活功能的几个独立多层感知神经网络的训练。该技术的核心思想是使用修改的矩阵乘法,该矩阵乘法将序数矩阵乘法替换为两个简单的矩阵操作,这些矩阵操作允许梯度流动的单独且独立的路径,可以在其他情况下使用。我们已经在模拟数据集中评估了我们的算法,该数据集使用10,000种不同的模型来改变样品,功能和批次的数量。如果与顺序方法相比,我们实现了从1到4个数量级的训练速度。
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Ithaca is a Fuzzy Logic (FL) plugin for developing artificial intelligence systems within the Unity game engine. Its goal is to provide an intuitive and natural way to build advanced artificial intelligence systems, making the implementation of such a system faster and more affordable. The software is made up by a C\# framework and an Application Programming Interface (API) for writing inference systems, as well as a set of tools for graphic development and debugging. Additionally, a Fuzzy Control Language (FCL) parser is provided in order to import systems previously defined using this standard.
translated by 谷歌翻译
Grasping is an incredible ability of animals using their arms and limbs in their daily life. The human hand is an especially astonishing multi-fingered tool for precise grasping, which helped humans to develop the modern world. The implementation of the human grasp to virtual reality and telerobotics is always interesting and challenging at the same time. In this work, authors surveyed, studied, and analyzed the human hand-grasping behavior for the possibilities of haptic grasping in the virtual and remote environment. This work is focused on the motion and force analysis of fingers in human hand grasping scenarios and the paper describes the transition of the human hand grasping towards a tripod haptic grasp model for effective interaction in virtual reality.
translated by 谷歌翻译
This short report reviews the current state of the research and methodology on theoretical and practical aspects of Artificial Neural Networks (ANN). It was prepared to gather state-of-the-art knowledge needed to construct complex, hypercomplex and fuzzy neural networks. The report reflects the individual interests of the authors and, by now means, cannot be treated as a comprehensive review of the ANN discipline. Considering the fast development of this field, it is currently impossible to do a detailed review of a considerable number of pages. The report is an outcome of the Project 'The Strategic Research Partnership for the mathematical aspects of complex, hypercomplex and fuzzy neural networks' meeting at the University of Warmia and Mazury in Olsztyn, Poland, organized in September 2022.
translated by 谷歌翻译